题面
Sol
容斥原理+背包
处理出所有金币无限制条件凑成\(j\)元的方案数 考虑计算\(c\)只有\(4\)种,可以容斥一波 就是无限制的总方案-\(1\)个硬币超出限制的方案+\(2\)个的-\(3\)个的+\(4\)个的# include# define RG register# define IL inline# define Fill(a, b) memset(a, b, sizeof(a))using namespace std;typedef long long ll;const int _(1005);IL int Input(){ RG int x = 0, z = 1; RG char c = getchar(); for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1; for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); return x * z;}typedef int Arr[_];int c[4], tot, mx, pw[4] = {1, 2, 4, 8}, s[_], d[4][_];ll f[_ * 100] = {1}, ans;int main(RG int argc, RG char *argv[]){ for(RG int i = 0; i < 4; ++i) c[i] = Input(); tot = Input(); for(RG int i = 1; i <= tot; ++i){ for(RG int j = 0; j < 4; ++j) d[j][i] = (Input() + 1) * c[j]; s[i] = Input(), mx = max(mx, s[i]); } for(RG int i = 0; i < 4; ++i) for(RG int j = c[i]; j <= mx; ++j) f[j] += f[j - c[i]]; for(RG int i = 1; i <= tot; ++i){ ans = 0; for(RG int j = 0; j < 16; ++j){ RG int op = 1, sum = 0; for(RG int k = 0; k < 4; ++k) if(j & pw[k]) op = -op, sum += d[k][i]; ans += (sum > s[i]) ? 0 : (1LL * op * f[s[i] - sum]); } printf("%lld\n", ans); } return 0;}